This vector induced in mice durable serotype-specific virus-neutralizing antibodies against DV1. (ectoM) from DV serotype-1. Immunization of mice susceptible to MV resulted in a long-term production of DV1 serotype-specific neutralizing antibodies. The presence of ectoM was critical Y-29794 oxalate to the immunogenicity of inserted EDIII. The adjuvant capacity of ectoM correlated with its ability to promote the maturation of dendritic cells and the secretion of proinflammatory and antiviral cytokines and chemokines involved in adaptive immunity. The protective efficacy of this vaccine should be studied in non-human primates. A combined measlesCdengue vaccine might provide a one-shot approach to immunize children against both diseases where they co-exist. Author Summary Dengue is a tropical emerging disease that threatens one-third of the world’s population, mainly children under the age of 15. The development of an affordable pediatric vaccine that could provide long-term protection against all four dengue serotypes remains a global public health priority. To address this challenge, we evaluated a strategy based on the expression of a minimal dengue antigen by live attenuated measles vaccine (MV), one of the most safe, stable, and effective human vaccines. As a proof-of-concept, we constructed a MV vector expressing a secreted dengue antigen composed of the domain III of the Y-29794 oxalate envelope glycoprotein Y-29794 oxalate (EDIII), which contains major serotype-specific neutralizing epitopes, fused to the ectodomain of the membrane protein (ectoM) from DV-1, as an adjuvant. This vector induced in mice durable serotype-specific virus-neutralizing antibodies against DV1. The remarkable adjuvant capacity of ectoM to EDIII immunogenicity was correlated to its capacity to mature dendritic cells, known to initiate immune response, and to activate the secretion of a panel of cytokines and chemokines determinant for the establishment of specific adaptive immunity. Such strategy might offer pediatric vaccines to immunize children simultaneously against measles and dengue in areas of the world where the diseases co-exist. Introduction Dengue fever is a mosquito-borne viral disease that threatens the health of a third of the world’s population. During the last twenty years, the four serotypes of dengue virus spread throughout the tropics due to the presence of the mosquito vector in all urban sites and to the major demographic changes that occurred in these regions. This global re-emergence shows larger epidemics associated with more severe disease [1]. Dengue is a major worldwide public health problem with an estimated 100 million annual cases of dengue fever (DF) and 500,000 annual cases of dengue hemorrhagic fever (DHF), the severe Y-29794 oxalate form of the MYCN disease, resulting in about 25,000 fatal cases, mainly in children under the age of 15. Although global prevention appears the best strategy to control dengue expansion, there is still no licensed vaccine available. Dengue viruses (DV) are enveloped, positive-stranded RNA viruses (family). Four antigenically distinct viral serotypes exist (DV1-4). The surface of virions is composed of the major envelope glycoprotein (E) and a small membrane protein (M). Very little information is available concerning the role of the 75-amino acid long M protein. We previously reported that ectopic expression of the 40-residue intraluminal ectodomain of M (referred hereafter as ectoM) is able to induce apoptosis in mammalian cells, suggesting that M might play an important role in the pathogenicity of flaviviruses [2]. The envelope E protein, which is exposed on the surface of viral Y-29794 oxalate particles, is responsible for virus attachment and virus-specific membrane fusion. Anti-E antibodies inhibit viral binding to cells and neutralize infectivity. A primary DV infection is believed to induce life-long immunity to the infecting serotype, while heterologous cross-protection against other serotypes lasts only a few weeks, allowing re-infection by another serotype. A number of.